Średnie ruchome Ta strona dotyczy prostej średniej ruchomej, najpopularniejszej i najpopularniejszej z ruchomych średnich. Jeśli interesują Cię inne wersje średniej kroczącej, wybierz poniższe linki: Prosta średnia ruchoma Prosta średnia ruchoma jest prawdopodobnie najpopularniejszym narzędziem analizy technicznej stosowanym przez handlowców. Prosta średnia ruchoma (SMA) jest często używana do identyfikacji kierunku trendu. ale może być używany do generowania potencjalnych sygnałów kupna i sprzedaży. SMA jest średnią lub średnią statystyczną. Przykład prostej średniej ruchomej przedstawiono poniżej: ceny za ostatnie 5 dni wyniosły 25, 28, 26, 24, 25. Średnia wynosiłaby (2528262627) 5 26,4. Dlatego linia SMA poniżej ceny dni ostatnich 27 wynosiłaby 26,4. W tym przypadku, ponieważ ceny są ogólnie wyższe, linia SMA w wysokości 26,4 może działać jako wsparcie (patrz: Support amp Resistance). Poniższy wykres z funduszu wymiany handlowej Dow Jones Industrial Average (DIA) przedstawia 20-dniową średnią ruchomą, działającą jako wsparcie dla cen. Średnia ruchoma Działając jako wsparcie - Potencjalny sygnał zakupu Gdy cena jest w trendzie wzrostowym, a następnie średnia ruchoma jest w trendzie wzrostowym, a średnia krocząca została przetestowana pod względem ceny, a cena odbiła się od średniej ruchomej kilka razy (tj. średnia służy jako linia wsparcia), a następnie przedsiębiorca może kupić przy następnych zwrotach z powrotem do prostej średniej ruchomej. Prosta średnia ruchoma może służyć jako linia oporu, jak pokazuje wykres DIA: Średnia ruchoma Działając jako opór - Potencjalny sygnał sprzedaży W czasach, gdy cena znajduje się w trendzie spadkowym, a średnia krocząca również w trendzie spadkowym, a testy cenowe SMA powyżej i jest odrzucana kilka razy z rzędu (tj. średnia ruchoma służy jako linia oporu), a następnie sprzedawca może sprzedać w następnym rajdzie do prostej średniej ruchomej. Powyższe przykłady wykorzystują tylko jedną prostą średnią ruchomą, jednak handlowcy często używają dwóch lub nawet trzech prostych średnich kroczących. Potencjalne zalety korzystania z więcej niż jednej prostej średniej ruchomej omówiono na następnej stronie. Powyższe informacje służą wyłącznie do celów informacyjnych i rozrywkowych i nie stanowią porady handlowej ani zachęty do kupowania lub sprzedawania jakichkolwiek towarów, opcji, produktów przyszłości, towarów lub rynków Forex. Przeszłe wyniki niekoniecznie wskazują na przyszłe wyniki. Handel jest z natury ryzykowny. OnlineTradingConcepts nie ponosi odpowiedzialności za żadne szczególne lub wynikowe szkody wynikające z użycia lub niemożności użycia, materiałów i informacji dostarczonych przez tę stronę. Zobacz pełne zrzeczenie się. Średnia ruchoma Ten przykład pokazuje, w jaki sposób obliczyć średnią ruchomą szeregu czasowego w Excelu. Średnia ruchoma służy do łagodzenia nieprawidłowości (szczytów i dolin) w celu łatwego rozpoznawania trendów. 1. Najpierw przyjrzyjmy się naszej serii czasowej. 2. Na karcie Dane kliknij Analiza danych. Uwaga: nie można znaleźć przycisku Analiza danych Kliknij tutaj, aby załadować dodatek Analysis ToolPak. 3. Wybierz średnią ruchomą i kliknij OK. 4. Kliknij pole Input Range i wybierz zakres B2: M2. 5. Kliknij w polu Interwał i wpisz 6. 6. Kliknij pole Zakres wyjściowy i wybierz komórkę B3. 8. Narysuj wykres tych wartości. Objaśnienie: ponieważ ustawiliśmy przedział na 6, średnia ruchoma jest średnią z poprzednich 5 punktów danych i bieżącego punktu danych. W rezultacie szczyty i doliny są wygładzone. Wykres pokazuje rosnący trend. Program Excel nie może obliczyć średniej ruchomej dla pierwszych 5 punktów danych, ponieważ nie ma wystarczającej liczby poprzednich punktów danych. 9. Powtórz kroki od 2 do 8 dla przedziału 2 i odstępu 4. Wniosek: Im większy przedział, tym bardziej wygładzone są szczyty i doliny. Im mniejszy przedział czasu, tym bardziej zbliżone są średnie kroczące do rzeczywistych punktów danych. Średnie kroczące: Jakie są jednymi z najpopularniejszych wskaźników technicznych, średnie kroczące służą do pomiaru kierunku aktualnego trendu. Każdy typ średniej ruchomej (zwykle napisany w tym samouczku jako MA) jest wynikiem matematycznym, który jest obliczany przez uśrednienie wielu przeszłych punktów danych. Po ustaleniu, uzyskana średnia jest następnie nanoszona na wykres w celu umożliwienia handlowcom spojrzenia na wygładzone dane zamiast koncentrowania się na codziennych wahaniach cen, które są nieodłączne na wszystkich rynkach finansowych. Najprostszą formę średniej ruchomej, znaną jako prosta średnia ruchoma (SMA), oblicza się, przyjmując średnią arytmetyczną z danego zestawu wartości. Na przykład, aby obliczyć podstawową 10-dniową średnią ruchomą, sumuje się ceny zamknięcia z ostatnich 10 dni, a następnie podzielono wynik przez 10. Na rysunku 1 suma cen z ostatnich 10 dni (110) wynosi podzielona przez liczbę dni (10), aby osiągnąć średnią 10-dniową. Jeśli przedsiębiorca chce zamiast tego uzyskać średnią 50-dniową, zostanie wykonany ten sam rodzaj obliczeń, ale będzie obejmował ceny w ciągu ostatnich 50 dni. Wynikowa średnia poniżej (11) uwzględnia 10 ostatnich punktów danych, aby dać handlowcom pojęcie, jak wyceniany jest majątek w stosunku do ostatnich 10 dni. Być może zastanawiasz się, dlaczego techniczni handlowcy nazywają to narzędzie średnią ruchomą, a nie zwykłą średnią. Odpowiedź jest taka, że gdy stają się dostępne nowe wartości, najstarsze punkty danych muszą zostać usunięte z zestawu i nowe punkty danych muszą wejść, aby je zastąpić. W związku z tym zbiór danych stale się rozlicza dla nowych danych, gdy tylko stają się dostępne. Ta metoda obliczania zapewnia uwzględnianie wyłącznie bieżących informacji. Na rysunku 2, po dodaniu do zestawu nowej wartości 5, czerwone pole (reprezentujące ostatnie 10 punktów danych) przesuwa się w prawo, a ostatnia wartość 15 zostaje usunięta z obliczeń. Ponieważ stosunkowo mała wartość 5 zastępuje wysoką wartość 15, można by oczekiwać, że średnia zestawu danych zmniejszy się, co ma miejsce w tym przypadku od 11 do 10. Jak wyglądają średnie kroczące Po wartościach MA zostały obliczone, są nanoszone na wykres, a następnie łączone w celu utworzenia średniej ruchomej linii. Te linie krzywoliniowe są powszechne na wykresach handlowców technicznych, ale sposób ich użycia może się drastycznie różnić (więcej o tym później). Jak widać na rys. 3, można dodać więcej niż jedną średnią ruchomą do dowolnego wykresu, dostosowując liczbę przedziałów czasowych użytych w obliczeniach. Te zakrzywione linie mogą początkowo wydawać się rozpraszające lub mylące, ale z biegiem czasu przyzwyczaisz się do nich. Czerwona linia to po prostu średnia cena z ostatnich 50 dni, a niebieska linia to średnia cena z ostatnich 100 dni. Teraz, gdy rozumiesz, czym jest średnia ruchoma i jak wygląda, dobrze jest wprowadzić inny typ średniej ruchomej i zbadać, jak różni się ona od poprzednio wspomnianej prostej średniej kroczącej. Prosta średnia ruchoma jest niezwykle popularna wśród handlowców, ale jak wszystkie wskaźniki techniczne, ma swoich krytyków. Wiele osób twierdzi, że użyteczność SMA jest ograniczona, ponieważ każdy punkt w serii danych jest ważony tak samo, niezależnie od tego, gdzie występuje w sekwencji. Krytycy twierdzą, że najnowsze dane są ważniejsze niż dane starsze i powinny mieć większy wpływ na końcowy wynik. W odpowiedzi na tę krytykę handlowcy zaczęli przykładać większą wagę do najnowszych danych, co od tego czasu doprowadziło do wynalezienia różnego rodzaju nowych średnich, z których najpopularniejszą jest wykładnicza średnia ruchoma (EMA). (Aby uzyskać więcej informacji, zobacz Podstawy ważonych średnich kroczących i jaka jest różnica między wartością SMA a wartością EMA) Wykładnicza średnia ruchoma Wykładnicza średnia ruchoma jest rodzajem średniej ruchomej, która zwiększa wagę ostatnich cen, aby zwiększyć jej responsywność do nowych informacji. Nauka nieco skomplikowanego równania do obliczania EMA może być niepotrzebna dla wielu handlowców, ponieważ prawie wszystkie pakiety wykresów wykonują obliczenia dla ciebie. Jednakże, dla was, maniaków matematyki, macie tutaj równanie EMA: Używając wzoru do obliczenia pierwszego punktu EMA, możecie zauważyć, że nie ma żadnej dostępnej wartości do wykorzystania jako poprzedni EMA. Ten mały problem można rozwiązać, rozpoczynając obliczenia za pomocą prostej średniej ruchomej i kontynuując z powyższą formułą. Dostarczyliśmy przykładowy arkusz kalkulacyjny, który zawiera rzeczywiste przykłady obliczania zarówno prostej średniej kroczącej, jak i wykładniczej średniej kroczącej. Różnica między EMA i SMA Teraz, gdy masz już lepsze zrozumienie sposobu obliczania SMA i EMA, przyjrzyjmy się, jak te średnie różnią się. Patrząc na obliczenia EMA, zauważysz, że większy nacisk kładzie się na ostatnie punkty danych, co czyni je typem średniej ważonej. Na rysunku 5 liczby okresów stosowanych w każdej średniej są identyczne (15), ale EMA reaguje szybciej na zmieniające się ceny. Zwróć uwagę, że EMA ma wyższą wartość, gdy cena rośnie, i spada szybciej niż SMA, gdy cena spada. Ta responsywność jest głównym powodem, dla którego wielu inwestorów woli używać EMA przez SMA. Co oznaczają różne dni Średnie ruchome są całkowicie konfigurowalnym wskaźnikiem, co oznacza, że użytkownik może swobodnie wybierać dowolne ramy czasowe, jakie chcą uzyskać przy tworzeniu średniej. Najczęstsze okresy stosowane w średnich kroczących to 15, 20, 30, 50, 100 i 200 dni. Im krótszy jest przedział czasowy do stworzenia średniej, tym bardziej wrażliwy będzie na zmiany cen. Im dłuższy przedział czasu, tym mniej wrażliwy lub bardziej wygładzony, średnia będzie. Podczas ustawiania średnich kroczących nie ma odpowiednich ram czasowych. Najlepszym sposobem na sprawdzenie, który z nich działa najlepiej, jest eksperymentowanie z wieloma różnymi okresami czasu, dopóki nie znajdziesz takiego, który pasuje do Twojej strategii. Średnie kroczące: jak ich używać
Comments
Post a Comment